Update

I’ve fallen into a bit of mathematical stagnancy since the first week or so of living here but after much ado, I’ve finally become regimented enough to start doing work and doing math and juggling other obligations, etc. etc.

What can I say? Moving is hard business!

Since falling off the mathematical (and career) wagon, I have managed to buy some new math books (uber sale; it’s my weakness) and to completely build a 95%-ish complete version of a new professional homepage which I hope to deploy within a week or so. As of a few days ago, I also managed to climb back on to the career (sans math) wagon, and as of today (well, yesterday; it’s 4:30am “tomorrow” for me right now), I also managed to do some low-key math with my BFF L. Hoping that pans out.

Later today, I’m going to head to IAS and spend the day doing math things and listening to postdocs talk about stuff I’ll likely never be mature enough to comprehend. Hoping this is day 1 of a lot of consecutive days of doing that and/or things like it. We’ll see.

Mathly yours…

Study plans, or Why it’s embarrassingly late into the summer and I still haven’t finalized a good way to learn mathematics

So it’s now creeping into the third (full) week of June. School got out for me during the first (full) week of May. Regardless of how woeful you may consider your abilities in mathematics, I’m sure you can deduce something very clear from these facts:

Summer is about half over.

Generally, that fact in and of itself wouldn’t be too terrible. I mean, big deal: Half the summer’s over, and I’ve been working throughout. How big of a failure can that really be?

In this case, it’s actually a pretty big one.

Despite my having read pretty much nonstop since summer began, I haven’t really made it very far into anything substantial. Compounded onto that is the fact that I’ve had to abandon a handful of reading projects after making what appeared to be pretty not-terrible progress into them because of various hindrances (usually, a lack of requisite background knowledge).

It’s been a pretty frustrating, pretty not successful summer, objectively.

Continue reading

Some Exercises from Lee’s Introduction to Smooth Manifolds

These are exercises from the first few pages of Lee’s Introduction to Smooth Manifolds. These are pretty elementary from a topology perspective – maybe the middle-to-late part of a semester on point-set topology – but I decided to put them here to (a) remember some of that stuff, and (b) force myself to not delay doing them any longer. As it turns out, I struggled more with these than I should have and even had to consult the internet for a couple thing; in instances of internet borrowing, I provide links.

Note, finally, that if you’re trying to hunt these particular exercises down within Dr. Lee’s book, they’re actually dispersed throughout the text; suffice it to say, I’m not a fan of that particular method of delivery. Nevertheless….

Continue reading

Yesterday, Today, and Forever

Yesterday was a day filled with reading.

Also, by and large, yesterday was a day consisting entirely of (differential) geometry / topology, so it’s really no surprise that – again – my dreams were all math related and tied to that general realm of theory. More precisely, I spent my entire sleep cycle pondering the Poincaré Conjecture (can we call it the Perelman Theorem yet?) and Ricci Flows. That’s certainly a night well spent.

Unsurprisingly, my day today will be largely similar. I downloaded a bunch of resources concerning the aforementioned topics (Poincaré-Perelman and Ricci Flows), as well as some (more) texts on Riemanninan Geometry (which I started perusing yesterday). Also in the works: A colleague of mine (who I’ll call DW2) and I have decided to work through Atiyah and MacDonald’s Introduction to Commutative Algebra, and I’m pretty sure if I don’t spend a significantly-larger amount of time on my professor’s Clifford paper, I’m going to have zero things about which to ever talk with him…

…then there’s the algebraic geometry stuff I’m working on in Eisenbud and Harris / Dummit and Foote, and the material from the seven or so other books I’m reading through concurrently right now….

Every day I’m huss-uh-lin’….

I have some things I want to write here later – expository things and what not – but for now, it’s just this check-in. Auf Wiedersehen!

The Half-Week That Never Was

As I type this, it’s 2:45am on a Wednesday. I haven’t been around these parts since Sunday night (actually, 3:30am Monday morning), so one would think I’d have accumulated a ginormous list of professional doings to post proudly about here.

I regret to inform: That is not the case.

Continue reading

Movin’ on up (and down) (and up) (and down)….

I decided to spend as much time as possible today studying after a few days of being nonchalant with it. I went to bed early-ish last night, woke up early-ish this morning, and hit the books with very few breaks in between.

As it turns out, this recipe gave me ample opportunity to learn new things. Who woulda thunk?

I started with my professor’s paper on M-conformal Cliffordian mappings. I made it through a couple more pages of that guy, verifying theorems and assertions as I went along. Then, right as I was on the precipice of real math, I realized how mentally taxing my morning had been and shifted direction a bit.

My new direction: Dummit and Foote. I started section 15.2 on Radicals and Affine Varieties. About 2/3 of the way through that section, I realized I really really need to learn some stuff about Gröbner Bases, so I decided to forego that and keep the ball rolling. I spent a few minutes flipping through Osborne’s book on Homological Algebra and upon realizing I’m far too underwhelming to tackle that guy, I shifted focus again to Kobayashi and Nomizu.

Of course, K&N has kind of worn out its welcome around here, and upon reading a page or two, I decided to break out a different Differential Stuff book instead. My target? Warner’s book Foundations of Differentiable Manifolds and Lie Groups. This book is a nice amalgam of Geometry and Topology, as evidenced by its somewhat nonstandard definition of tangent vectors. Maybe I’ll share some of that later.

Finally, I decided to shift my focus back towards Algebraic Geometry, whereby I broke out Eisenbud and Harris’s book The Geometry of Schemes and tried to stay afloat. Much to my own surprise, I was able to make it through fifteen-or-so pages without floundering completely and/or ripping all my hair out, so I’m hoping that maybe the information I’ve picked up in other places has done me some good. We’ll see for sure moving on.

Overall, I think I cranked out about 45-50 pages of reading today – and all (well, most) on material that’s completely new. It ain’t a Fields Medal, but it ain’t a flop either.

Until next time….

de Rahm Complexes: Really cool math, or a miracle?

Before explaining the title, here’s a little background:

Let \Omega^* be the vector space over \mathbb{R} with basis

1,dx_i,dx_idx_j,dx_idx_jdx_k,\ldots,dx_l\ldots dx_n.

Using this notation, the collection \Omega^*(\mathbb{R}^n) of C^\infty differential forms on \mathbb{R}^n are elements

\begin{array}{rcl}\Omega^*(\mathbb{R}^n) & = & \left\{C^\infty\text{ functions on }\mathbb{R}^n\right\}\otimes_{\mathbb{R}}\Omega^*\\[0.5em] & = & \oplus_{q=0}^n \Omega^q(\mathbb{R}^n)\end{array}

where \Omega^q(\mathbb{R}^n) consists of C^\infty q-forms on \mathbb{R}^n. There also exists a differential operator d:\Omega^q(\mathbb{R}^n)\to\Omega^{q+1}(\mathbb{R}^n) which satisfies the expected properties for exterior differentation. Under this construction, the pair \left(\Omega^*(\mathbb{R}^n),d\right) is called the de Rahm complex on \mathbb{R}^n. Moreover, the kernel and image of d are known as the closed and exact forms, respectively.

When this material was presented in Bott & Tu’s Differential Forms in Algebraic Topology, the following quote was included:

The de Rahm complex may be viewed as a God-given set of differential equations, whose solutions are the closed forms. For instance, finding a closed 1-form f\,dx+g\,dy on \mathbb{R}^2 is tantamount to solving the differential equation \partial g/\partial x-\partial f/\partial y=0….

So maybe there is a God, and maybe God is a mathematician? *ponders*